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MICROCONVECTIVE HEAT -AND MASS-TRANSFER
PROCESSES IN FLUIDS WITH INTERNAL
ROTATION

V. G. Bashtovoi, A. N. Vislovich, UDC 536.2:532.584:538.4
and B. E. Kashevskii

A number of experimentally observed phenomena, (the magnetoviscosity effect, i.e., increase of the
viscosity of a ferromagnetic suspension in a magnetic field [1], and the entrainment of a polar fluid by a non-
steady magnetic field [2-4]) can be explained on the basis of the notion of internal rotations and the agsociated
internal friction as a mechanism of momentum transfer from the field to the medium [5-8]. In line with the
expanding study of the influence of internal rotations on macroscopic fluid motion there is also considerable
interest in the development of mathematical models of asymmetric polarizable and magnetizable media [5,
9-12].

In the present article we show that the influence of internal rotations under definite conditions not only
leads to a modification of the momentum-transfer law, but also proves significant in heat~transfer processes
and, in the case of multicomponent fluids, mass-transfer processes as well, giving rise to a highly specific
"microconvective® transfer mechanism.

Inasmuch as the significance of the internal-rotation concept is particularly highlighted in the case of
suspensions and colloidal solutions, we discuss a certain volume of a suspension in a system S', in which
ma croscopic motion does not take place. This system rotates relative to the laboratory frame S with an
angular velocity =(1/2)rotv (rot=curl). In the system S' the particles of the suspension rotate with a veloc-
ity R =w—8, where w is their rotational velocity in the system S. The rotating particles together with the
fluid entrained by them through viscosity induce a local microconvective heat transfer in the system §' in the
case of a nonuniform temperature distribution in the fluid. When the distance between the particles is commen-
surate with their sizes and the latter are large, a possible outcome of the interaction of the temperature
fields of the individual microvortices and heat transfer between them is a macroscopic heat flux qr, which
competes with the conductive heat flux qq.

We estimate the ratio qr/qy on the basis of the heat-transfer equation vyT =uy?T, applying it to the
individual microvortex, in which case it is necessary to adopt as the characteristic space scale the micro-~
vortex radius I,. Then v=~Rl,, and:
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If 1,2 100 1 and n=10"7 m?/sec, then qp/qy=1 for R=10 sec™l
Thus, a sizable net effect is to be expected in the case of relatively large vortices (~ 10 to 100 ).

A complete theoretical solution of the heat-transfer problem in the given situation can be obtained by
analyzing the hydrodynamics and total heat transfer in application to each individual microvortex on the basis
of equations describing the carrier fluid with regard for interaction of the microvortex temperature and
velocity fields. Since this problem appears to be unsolvable analytically, we propose here a phenomenological
approach, wherein rather than consider all the details of microconvective heat transfer we introduce the con-
cept of the effective thermal conductivity tensor A ik, which has the property that the heat flux determined by
it — 9§ = Ajpwk T — is equal to the flux induced by the actual mechanisms: microconvection and conduction, The
tensor A jk is a function of the vector R. The general form of the tensor constructed from the components of
R is A = A8 — (A /RDR Ry, -+ (ho/R)esum Riwhere €jpyy, is the Levi-Civita tensor.

Inasmuch as the fluid motion induced in the microvortices by microconvective heat transfer takes place
in a plane perpendicular to the vector R, it is reasonable to agsume that the heat transfer along R is solely
attributable to true heat conduction. This inference is embodied mathematically in the relation (q*R)=
=Ao(vT -R), which asserts that A ;—Ar=A,. Consequently, ’

}‘ih = ()\'0 + }Vr)"sik - }”reiek + }"aaihmemv (2)
where eg=Rg/R.

The constraints on the signs of the coefficients A4, Ay, Ay must be deduced from the condition of non~
negativity of the net entropy o produced by the effective thermal conduectivity [13]:

IPo, = —qvI'>0
or
(ho -+ Wy TP — hpesery Tyl = 0. (3)

This result is valid for any values of ey, sbecifically if ej=0. Therefore, A+ Ar=0. By the independence
of conduction and microconvection we obtain

Doy hp = 0. (4)

Relation (4) automatically ensures satisfaction of Eq. (3), because A p(vT)? = A rejepy; TykT. The sign of Ag
remains indeterminate, because the heat flux due to the antisymmetric part of the thermal conductivity tensor
Ag €ikmem, yields a zero contribution to the net entropy: €jkmemvkTviT= 0.

The coefficients A » and A4 depend on the thermophysical characteristics of the carrier fluid and on the
sizes and concentration of the particles, and for a given medium they are functions only of the scalar invariant
of R, i.e., [RI.

It is important to note that the change of the tensorial dimensions of the transfer coefficients for shear
flows of fluids characterized by internal structure is discussed in [14], and the tensorial nature of the thermal
conductivity of a medium in the presence of a vector field of internal rotations is degcribed from the formal
standpoint in [10].

We now write in vector form the expression for the heat flux in 2 medium whose thermal conductivity
is described by relation (2):

q=—hyT — A(yT — elesy])) — hge X v 7. (5)

The first term in this expression corresponds to the true thermal conductivity of the medium, the
second term specifies the microconvective heat flux in a plane perpendicular to the vector e and parallel to
the projection of the temperature gradient onto that plane, and the third term describes, correct to the sign of
Ag » the microconvective heat transfer in the direction perpendicular to the vectors e and ¢T. The diffusion
tensor Djk of the component dissolved in the medium with microrotations has a form similar to that of the
thermal conductivity tensor (2). '

For the thermomechanical description of a medium with the transfer properties discussed above we
must resort to the formal machinery of asymmetrical hydrodynamics. Neglecting diffusion of internal rota-
tions, compressibility, and dissipative heat-release processes, we write the transfer equations for an asymmet-
rical fluid in the form:
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pdv,/dt = 86,,/02, + pfy; (6
Idofdt = —&;mn (1/2)(Ompn — Opm) + om;; D
cppdT/dt = —div q; divv =0,
where Iis the total moment of inertia of the particles per unit volume and f; and mj are the densities of the
external forces per unit mass and the moments of the forces.

The presence of external volume torques is a necessary condition for the production of internal rotations
in the fluid. Consequently, for experimental observation of the microconvective heat-transfer effect one can
use ferromagnetic suspensions. Internal rotations can be created in such suspensions either by a rotating
field or by uniform magnetic field applied to a shear flow of the suspensions. We consider the second tech-
nique, which appears to be the more practical to implement.

It is essential to note that the thermal conductivity of a ferromagnetic suspension in the presence of a
magnetic field is also a function of the field vector H: A=A kR, H). Inasmuch as the field-induced aniso-
tropy of the thermal conductivity is associated with the structure imparted to the suspension by magnetic
dipole—dipole forces, and as the internal-rotation-induced anisotropy is associated with structural disintegra-
tions, the influence of the field on the thermal conductivity of the medium can be neglected in the first stage
of investigation of microconvective heat transfer.

We invoke the expression obtained by Kagan and others [4] for the stress tensor of an incompressible
ferromagnetic suspension in the near-equilibrium approximation with respect to magnetization (it is assumed
that the characteristic hydrodynamic time constants are small in comparison with the magnetization relaxa-
tion time of the suspension):

v, dv H.B
Oin = pdu + (a'; + T’L> 2 — 2,8, (Q — 1y (Q-h)). (8)

Here n and ny are the ordinary and rotational viscosities, respectively. The value of 1y for a given suspen-
slonis a function of the field H. Without writing out the explicit form of ;. calculated in [4] with stringent
constraints on the properties of the suspension, we agsume that relation (8) is applicable to magnetic sus-
pensions over a wide range of their dispersion and other characteristics. Also, hj=H;/H; Bj=H;j+ 47 Mj is
the magnetic induction, and Mj is the magnetization of the suspension. The steady-state equations of motion
of a ferromagnetic suspension in uniform fields, according to (6)-(8), have the form

PIVYIY = —Vp + Y™ — 1, 1ot (@ — h(@-h)); ©
where 11y = max 7y is the value of the rotational viscosity when the rotations are completely frozen (w=0).

We augment Egs. (9) and (10) with the steady-state heat-conduction equation

cpovy T = —divq, (11)
in which q is given by expression (5).

Proceeding from relations (5), (9)-(11), we consider nonisothermal Couette flow in the annular space
between two long cylinders when the inner cylinder of radius Ry is rotating with a velocity @, and a constant
heat flux qq is specified on it, while the outer cylinder of radius R, is at rest and is thermostatically regulated
at a constant temperature T;. The magnetic field is uniform and perpendicular to the generatrix of the eyl-
inder.

In this situation Eq. (9) describes flow with a constant shear velocity:

R2Q
ioi

s L
9tz
Rj— R}

This fact coupled with Eq. (10) leads to the conclusion that the suspended particles experience slip relative to
the carrier fluid, with an angular velocity

n,RIQ,

e (12)
W (B—r2)

R=—

In the given problem, since the internal rotations are uniform, they do not alter the temperature profile
or the velocity profile of the fluid, rather they merely intensify the heat-transfer process. The solution of
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the heat-conduction equation, which takes the form 2T =0 with boundary conditions TRy =Ty, TRy =—qy/A*,
where A* =A 4+ Ap, is

T = Ty -+ (R/A¥) In (R,/7).
The temperature T, on the inner cylinder is
Ty = Ty + (2B /0*%) In (R,/R). (13)

If the ratio nr/nlq is known, then by determining Ty, qy, and Q; experimentally it is possible to determine
the function A r(R) according to (13) and (12) for a given suspension, such being the objective of the experiment.
A better technique for determining nr/nf is to measure 7y together with Ty, 9g, and £ in a single experiment
according to the value of the torque acting on one of the cylinders.

In another situation that is also simple to realize experimentally, namely, nonisothermal Poiseuille flow
in a narrow gap between two horizontal thermostatically regulated plates in a uniform perpendicular field,
not only the heat flux, but also the temperature profile of the liquid changes. This happens because the internal
rotations and, hence, the thermal conductivity in the layer vary across the layer from one point to the next.
In the given situation the equation of motion (9) is solved independently of the heat-conduction equation. With
the boundary conditions v, |, = v,|y=—; = 0this solution turns out to be

ov -
Ve = gur (02— %), vy =0, =03 @, = — 5= =1Ly,
where 7* =7n,+ 1. The intensity of the internal rotations is given by the expression
R, = (n,vp/n v*)y. (19)

Proceeding from this result, we analyze the thermal situation in the layer, assuming that Ay is a linear
function of |R|:

A, = ajR}], o> 0. (15)
Relations (15) and (14) give
Ae =81yl B=anvp/n ¥

Inasmuch as the derivative A'y is discontinuous at the point y =0, the solution of the heat-conduction equa-
tion, which in this case has the form

(L4 Rpide) T = (M/2g) T" =0,
must be sought separately in the domain 0< y=<h(A',=8) and in the domain ~h <y < (A'x=-pB), and then the
solutions matched at y=0.

Finally, introducing the dimensionless variables ¢ =y/h, ® ={2T —(T;+ T3)1/(T{—T,) with the boundary
conditions ®(—1)=—1, (1) = 1, we obtain
= sgn (§) In (1 + BI§))In (1 + B), (16)
where B=8h/A( is determined by the ratio of the maximum value of the effective thermal conductivity co-
efficient A, associated with internal rotations to the thermal conductivity Ay of the rotationless fluid and char-
acterizes the nonlinearity of the temperature profile. As B—0 (the influence of internal rotations diminishing),

expression (16) goes over to ®=¢, i.e., gives the usual linear temperature distribution along the height of the
layer.
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The change in behavior of the temperature distribution of the liquid in the layer with increasing value
of the parameters B is illustrated in Fig. 1.

It is seen that as B is increased the temperature profile becomes increasingly curved in such a way
that the thermal stresses, decreasing near the plate, extend intc the central region of the layer, where §0/9% =
= B/ln (1 — B).

It is also seen that the increase in the heat flux g through the layer due to internal rotations is given by
the expression

q'q¢y = Bln (1 -- B),

which in the case of small values of B goes over to the relation g=qg(1+ B/2). For experimental observation
of the effect in question it appears more practical to measure the temperature drop between the boundariesg
of a horizontal layer, in which case the lower plate is thermostatically regulated at T=T, and a constant heat
flux q is maintained at the upper plate.

Reducing the temperature to dimensionless form by reference to the temperature drop that occurs in
the absence of internal rotations (H=0): ®@=(T~ TO)/(T1 T,), where T1 is the temperature of the upper plate
in the absence of rotations and 'E‘i—T0= 2qh /Ay, and using the relation y =¢h, we find a solution of the stated
problem in the form

91:(T1—T0)4'(T1—T1»\: a7
In (1 -~ BY/B.

We now obtain a simple estimate of the reduction of the thermal stress in the layer for a given heat
flux, assuming in accordance with (1) that B=RI}/» and, in accordance with (14) that R =n,yph/n%n*. Putting
il =1, ¥ =107, yp = 0,6, h = 1, [, = 1072, % — 107% (cgs units), we obtain B 6. Substituting the value
found for B into (17), we find that the temperature drop decreases by one third (®;=0.3).

Thus, the mechanism discussed here can result in appreciable intensification of heat transfer and modi~-
fication of the temperature profile in shear flows of suspensions in which volume torques are present.

LITERATURE CITED

1. J. P. McTaque, "Magnetoviscosity of magnetic colloids," J. Chem. Phys., 51, 133 (1969).
2. V. Zwetkoff, "Bewegung anisotroper Flussigkeiten im rotierenden Magnetfeld " Acta Physicochim., 10,
No. 4, 554 (1939).
3. R. Moskowitz and R. E. Rosensweig, "Nonmechanical torque-driven flow of a ferromagnetic fluid by an
electromagnetic field," Appl. Phys. Lett., 11, No. 10, 301 (1967).
4. I, Ya. Kagan, V. G. Rykov, and E. I. Litovskii, "Flow of a dielectric ferromagnetic suspension in 2
rotating magnetic field," Magnitn. Gidrodinam., No. 2, 135 (1973).
5. M. I. Shliomis, "Effective viscosity of magnetic suspensions," Zh. Eksp. Teor. Fiz., 61, No. 6(12), 2411
(1971).
6. Yu. A. Glazgov, "Role of higher harmonics in the motion of ferrosuspensions in a rotatmg magnetic
field," Magnitn. Gidrodinam., No. 4, 31 (1975).
7. A. O. Tsebers, "Interphase stresses in the hydrodynamics of fluids with internal rotation," Magnitn.
Gidrodinam., No. 1, 79 (1975).
8. A.N. VlS].OVIdI "Action of a rotating field on a ferromagnetic suspension in a layer witha free boundary,"
Pis'ma Zh. Eksp. Teor. Fiz., 1, No. 16, 744 (1975).
9. J.T. Jenkins, "A theory of magnetic fluids," Arch. Rat. Mech. Anal., 46, No. 1, 42 (1972).
10. V. M. Suyazov, "Structural-continuum approach to the magneto- and electrorheology of disperse systemsg,"
Magnitn. Gidrodinam., No. 2, 3 (1972).
11. A. O. Tsbers, "Flow of dipole fluids in external fields,” Magnitn. Gidrodinam., No. 4, 3 (1974).
12. V. G. Bashtovoi and B. E. Kashevgkii, "Asymmetrical model of a magnetic fluid with allowance for
finite anisotropy of the ferromagnetic particles," Magnitn. Gidrodipam., No. 4, 24 (1976).
13. 8. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North~-Holland Publ. Co., Amsterdam;
Wiley, New York (1964).
14. A.V. Lykov and B. M. Berkovskii, "Transfer laws in non-Newtonian fluids," in: Heat and Mass Transfer
in Non-Newtonian Fluids [in Russian], Energiya, Moscow (1968).

355



